A parametric empirical Bayes method for cancer screening using longitudinal observations of a biomarker.
نویسندگان
چکیده
A revolution in molecular technology is leading to the discovery of many biomarkers of disease. Monitoring these biomarkers in a population may lead to earlier disease detection, and may prevent death from diseases like cancer that are more curable if found early. For markers whose concentration is associated with disease progression the earliest detection is achieved by monitoring the marker with an algorithm able to detect very small changes. One strategy is to monitor the biomarkers using a longitudinal algorithm that incorporates a subject's screening history into screening decisions. Longitudinal algorithms that have been proposed thus far rely on modeling the behavior of a biomarker from the moment of disease onset until its clinical presentation. Because the data needed to observe the early pre-clinical behavior of the biomarker may take years to accumulate, those algorithms are not appropriate for timely development using new biomarker discoveries. This manuscript presents a computationally simple longitudinal screening algorithm that can be implemented with data that is obtainable in a short period of time. For biomarkers meeting only a few modest assumptions our algorithm uniformly improves the sensitivity compared with simpler screening algorithms but maintains the same specificity. It is unclear what performance advantage more complex methods may have compared with our method, especially when there is doubt about the correct model for describing the behavior of the biomarker early in the disease process. Our method was specifically developed for use in screening for cancer with a new biomarker, but it is appropriate whenever the pre-clinical behavior of the disease and/or biomarker is uncertain.
منابع مشابه
Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold
In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...
متن کاملGenerating longitudinal screening algorithms using novel biomarkers for disease.
Recent advances in molecular technology are leading to the discovery of new tumor biomarkers that may be useful for cancer screening and early diagnosis. Translating a potential screening biomarker from the laboratory to its use in patient care may require an algorithm or screening rule for its application. An algorithm that can detect the smallest deviation from a defined norm is likely to ach...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملEMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL
A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...
متن کاملRegression Analysis under Inverse Gaussian Model: Repeated Observation Case
Traditional regression analyses assume normality of observations and independence of mean and variance. However, there are many examples in science and Technology where the observations come from a skewed distribution and moreover there is a functional dependence between variance and mean. In this article, we propose a method for regression analysis under Inverse Gaussian model when th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2003